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Dual FET Active Patch Elements
for Spatial Power Combiners

Xiao Dong Wu and Kai Chang Fellow, IEEE

Abstract—A novel dual-FET active patch antenna element and
arrays for quasi-optical power combining are described. The
circuit uses two FET’s that symmetrically load a split patch an-
tenna. The configuration of the devices decreases H-plane cross-
polarization dramatically. The power combining was achieved
by injection locking through mutual coupling. An equivalent
isotropic radiation power of 0.88 W for a 2-element dual-FET
patch antenna array has been obtained. For a 2x2 array, an
equivalent isotropic radiated power of 2.99 W was achieved. The
circuit is planar and amenable to monolithic circuits.

1. INTRODUCTION

OLID-STATE oscillators have limited output power in the

microwave and millimeter-wave region. In order to obtain
higher power, it is desirable to combine the power generated
from many solid-state oscillators. Many power-combining
techniques have been demonstrated in the microwave and
millimeter-wave frequency range [1]. Most of these techniques
have serious limitations due to size and moding problems.
They become impractical at millimeter-wave frequencies as
the waveguide dimensions become very small.

Recently, a planar quasi-optical approach has been sug-
gested by Mink [2] for combining a large number of devices.
The transverse dimensions of quasi-optical systems can be
quite large, which accommodates many devices without the
problem of multi-frequency operation. Quasi-optical arrays de-
pend upon the interaction of the devices for proper operation.
As the power combining takes place in the free space, high
combining efficiency is possible.

Currently, two major types of quasi-optical power-
combining arrays have been reported. One is a grid structure
loaded with transistors [3], [4]. The second approach involves
arrays of weakly coupled individual oscillator elements
[51-{8]. The important figures of merit are the output power,
radiation pattern, antenna efficiency, combining efficiency,
and packing density.

This paper reports the design and performance of a novel
active antenna with two FET’s integrated directly on one
patch. The circuit forms an element for spatial or quasi-optical
combiners. The configuration of the devices decreases H-plane
cross-polarization dramatically. These active antennas were
successfully combined to form two-element and 2x2 atrays.
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Injection locking through mutual coupling was accomplished,
and good power combining efficiency was achieved. The new
structure is completely planar, and there is no need for drilling
holes through the substrate for bias. Because the circuit is in
the same plane, it is suitable for monolithic implementation.

II. DESIGN OF DUAL-FET ACTIVE RADIATING ELEMENT

Several different FET active patch antennas have appeared
in the literature. One circuit uses the patch as a feedback
resonator and as a radiator [9]. Another circuit uses a gap
between the gate and the drain to form feedback, with the
source leads grounded through the substrate [7]. The patch
antenna and oscillator circuit can be separated, usually in a
different plane [5]. The patch antenna is useful because it is
simple to fabricate, can easily accommodate devices, has high
antenna efficiency, and serves as a resonant stabilization cle-
ment in the oscillator circuit. However, active patch antennas
with the device integrated directly on the patch antenna suffer
high cross-polarization [7].

This paper reports power combining using novel dual-
FET active patch antennas in which each antenna element
is symmetrically loaded with two FET's. The use of dual
devices in a patch was first reported by York and Compton [10]
with improved radiation characteristics using two Gunn diodes
mounted inside a single patch. The actual current distribution
on the patch with a single device is quite different from that of
a deviceless patch. An excess of higher-order current modes
will be generated on the patch because of the discontinuity.
These higher-order modes are partially responsible for the high
cross-polarization. Also, asymmetry in the device location will
further exacerbate this problem by exciting current modes with
odd symmetry. The dual-FET active patch circuit overcomes
these problems and can be easily built with an excellent
radiation pattern [11].

The dual-FET active patch antenna is shown in Fig. 1. The
gaps between the source and drain and between the source and
the gate form a feedback circuit to make the device unstable.
The patch serves both as a resonator in the feedback loop
for the FET oscillator and as a radiating element. Different
from the Dual-Gunn Diodes patch antenna, where the two
diodes are symmetrical on the resonant dimension, the FET s
are symmetrical on the nonresonant dimension. As the FET’s
operate in an in-phase mode, oppositely directed higher-order
mode currents on the patch will cancel out in the H-plane
far field. The H-plane cross-polarization is thus reduced with
this configuration. The design of the patch antenna was based
on equations given by Bahl and Bhartia [12] and Lo ef al.
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Fig. 1. Circuit configuration of a dual-FET active patch antenna.
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Fig. 2. Dimensions of patch antenna.

[13]. The relation between resonant frequency f,., (GHz) and
the patch electrical dimensions W and L (cm) are given by
[13]. The mn mode numbers are associated with the x and y
directions. The dominant radiating mode is m = 0 and n = 1.
Due to the fringing field effect, the actual physical dimensions
are smaller. The modified dimensions (L, Wppy) shown in
Fig. 2 can be calculated by the equations given in [12]. As an
approximation, the design was based on the theory for a patch
without the gap and devices.

The patch has an overall size of 10 by 10 mm that is divided
into two halves separated by a 2-mm gap. The main difference
from the conventional patch antenna is that the dual-FET patch
has no ground plane on the substrate. Instead, a reflecting
mirror that has dimensions of 90 by 200 mm was placed
approximately 0.5 mm behind the circuit. The output power
and frequency of a dual-FET active patch antenna varied with
the position of the reflecting mirror. All circuits, including the
single-patch antenna and two- and four-element arrays, were
constructed on RT/duroid 5870 substrate with a thickness of
62 mils. As the mirror was put very close to the substrate, the
design method described above gives a good approximation.
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Fig. 3. E-plane pattern of the dual-FET active patch antenna.-

The experimental resonant frequency for the active patch an-
tenna is 8.1 GHz, whereas the theoretically resonant frequency
for the passive antenna is 8.26 GHz.

III. RESULTS FOR A SINGLE
DUAL-FET ACTIVE PATCH ANTENNA

A standard horn antenna with a gain of G; was used
to measure the power output from a dual-FET active patch
antenna. The standard horn antenna was placed a distance R
from the active antenna. The received power P, was measured
using a power meter. The output power of the active antenna
Py was calculated using the Friis transmission equation:

47rR>2 1

1)

Py=P | —
0 P(,\O G1Go

where

Ag = the wavelength in free space

G, = the gain of dual-FET active patch antenna

If the active antenna gain is unknown, the Equivalent
Isotropic Radiated Power (ETRP) defined below should be
used.

4R

7
EIRP = P, (——) )

Xo ) Gi
The devices used were Fujitsu FHX35LG general purpose
FET’s. The rated output power of the FET is 25 mW at 12
GHz. A clean spectrum output power of 47 mW was observed
at 8.1 GHz for a dual-FET active patch antenna element. The
output power is about twice the output of the single FET active
patch antenna. In the power calculation, it is assumed that
the patch has an antenna gain of 6 dB. This output power
corresponds to an equivalent isotropic radiated power of 0.138
W. Figs. 3 and 4 show the E- and H-plane patterns for the
dual-FET patch antenna. The cross-polarization is 12 dB down
from the co-polarization radiation, which is much better than
the single FET patch.

1V. RESULTS FOR TWO-ELEMENT DUAL-FET
ACTIVE PATCH ANTENNA ARRAY

Mutual coupling between the oscillator elements will have
an effect on the injection locking behavior of the array.
The single element described in the previous section was
used to form a 2-element array as shown in Fig. 5. Spacing
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Fig. 4. H-plane pattern of the dual-FET active patch antenna.
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Two-element active patch antenna array.

Fig. 5.

between the elements is approximately Ao/2. It is necessary
for the individual oscillators to have nearly identical oscillation
frequencies, which can be obtained by using separate power
supplies and changing the bias voltage of each element.
However, providing individual bias to all the elements of a
large array containing several hundred devices is impractical.

A dielectric slab can be placed in front of the array to
overcome these problems. The slab and the mirror form a
Fabry—Perot resonator as shown in Fig. 6. The dual-FET active
array was operated by connecting the bias lines from the
elements to a single power supply. The dielectric constant of
the slab was 10.5. The dielectric slab not only can influence the
coupling between the elements and thereby facilitate phase-
coherent operation, but also the position of the slab can
influence the output power and thus increase the gain of the
array.

An EIRP of 0.88 W was achieved at 7.62 GHz. Here the
ETRP is used since a dielectric slab was placed in front of the
active antenna array and the active antenna gain was difficult
to estimate. The E- and H-plane patterns of the two-element
array are shown in Figs. 7 and 8, respectively. The cross-
polarization was 15 dB down from the peak power in both
the E- and H-plane. The spectrum of the two-element array
is shown in Fig. 9.

V. DESIGN AND RESULTS FOR FOUR-ELEMENT
DUAL-FET ACTIVE PATCH ANTENNA ARRAY

A 2x2 array was also built and tested. The individual
elements were designed as described above. Due to variances
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Fig. 6. Quasi-optical power-combining measurement setup.

0
-5 1
—
[ae)
=
-10 +
-
<5 E-c
g
a. 18 — -~ E-cross
fon)
2 20 ,
= e T U L I -
B , “\ '/ — N P ‘~
[} N 7 -~ ~
a< - \ L= .
B ./ ~.” '
-30 + .' } + + + + : |
-90 -70 -50 -30 -10 10 30 50 70 20
Angle (degrees)

Fig. 7. E-plane pattern of the two-element dual-FET active patch antenna
array.
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Fig. 8. H-plane pattern of the two-element dual-FET active patch antenma
array.

in individual FET parameters, it was difficult to make the
oscillators—which used a common power supply—to oscillate
at the same frequency. Small frequency tuning could be
achieved by adjusting the position of the dielectric slab and
the position of the reflecting mirror. For dual-FET active
antenna array design, it is important to choose FET’s with
similar parameters. Also, symmetry in the device location is
important. Therefore, monolithic fabrication of large dual-FET
active antenna arrays is desirable.

The design and operation of the 2x2 active antenna ar-
ray arc described below. Let the coupling coefficient be-
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Fig. 9. Spectrum of the two-element dual-FET active patch antenna array.

tween elements mn and ij be written as \mbi Cpp .y =
Crin, 1j €Xp (=1 Pmn, +5), Where Crun, . < 1.

The relative phase in the steady-state of the 2x2 symmetric
array can be written as [14]:

2Q
C
+ a’: sin (Ag — @b))} 3)

Co (. .
8= 811 [l - (sm (A1 — @) +sin(Az — D)

C,. .
5§ = 812 {1 - @(——sm (A + 9,)

C
+ C—” sin (Ag — Ay — ®p)

-+ sin (Ag — Al — @a)):l (4)
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where Ay = p11 — p12, Do = P11 — P21, Dz = @11 — P22
A1 = Aexp(—je11), Ay = Aexp(—jpi2),
Aoy = Aexp(—jp21), Az = Aexp(—jp2),
Q= Q1 = Q12 = Q2 = Qa2,
A=Ay = A = Ay = Ay,
C,= 011, 12 = C'111 21 = Cq exp(—j@a),
Cp = C11 22 = Ca 11 = Cpexp (—jB).
A = free running amplitude of the ijth oscillator
¢,; = free running phase of the :jth oscillator
Q;; = external Q of the ¢jth oscillator circuit
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Fig. 10. Pour-element active patch antenna array.
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Fig. 11. E-plane pattern of the four-element dual-FET active patch antenna

array.

8,; = jwi,;, free running complex frequency of the ¢jth
oscillator

s = jw, complex frequency of an injection locked array

* denotes complex conjugate.

Suppose these elements operating at the same frequency, for
coherent combining (s11 = S12 = 821 = $S22) and from
(3)—(6), it is required that Ay = nw, Ay = mn, and A3 = kT,
where n, m, k = 0, £1, £2 .-.. Mode stability for these
modes can be analyzed using a perturbation method. In order
to get a sum antenna pattern from the quasi-optical array, the
relative phase is very important. The above analysis shows
that the phase difference between two neighboring elements
should be equal to multiples of 7. A relative phase of = was
selected for our design since it provided better stability.

Fig. 10 shows the circuit arrangement of the 2x2 active
array. The right phase relation was achieved by reversely
connecting the FET’s. For the 2x2 array, an equivalent
isotropic radiated power of 2.99 W was achieved at 8.94 GHz.
The combining efficiency is about 85%. (100% combining
efficiency corresponds to 0.88 Wx4. The 0.88 W is from a
2x 1 array. and 4 is due to the fact that both the active antenna
gain and the output power are double.) Figs. 11 and 12 show
the E- and H-plane radiation patterns. The cross polarization
is 20 dB down in both E and H plane. The frequency change
is due to the coupling between the elements.
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Fig. 12.  H-plane pattern of the four-element dual-FET active paich antenna
array.

VI. CONCLUSION

This paper has presented a novel dual-FET active patch
antenna element and arrays. The additional FET improves the
radiation characteristics of the active antenna and increases
the power output. Two and four elements of these dual-FET’s
were successfully combined with good power-combining ef-
ficiency. By changing the position of the dielectric slab and
the reflecting mirror, the output power of the dual-FET active
antenna array can be optimized. This circuit should have

~many applications in low-cost transmitters for microwave and
millimeter-wave frequencies. Since the circuit is in the same
plane, it is suitable for monolithic implementation.
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